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Abstract

A total-field scattered-field (TFSF) boundary can be used to introduce incident plane waves
into finite-difference time-domain (FDTD) simulations. For fields which are traveling obliquely
to the grid axes, there is no simple way to account fully for the effects of the inherent numeri-
cal artifacts associated with plane-wave propagation in the FDTD grid. Failure to account for
these artifacts causes erroneous fields to leak across the TFSF boundary. The work performed
under this grant developed a TFSF boundary for problems involving a planar interface that is
theoretically exact. Such a boundary is essential when modeling the scattering from objects
in the vicinity of ocean sediment. Although the TFSF boundary assumes a planar interface,
the actual interface used in a simulation can take any shape and the space within the total-field
region is arbitrary. A suite of C programs was written to implement the boundary.

1 Introduction

The total-field scattered-field (TFSF) formulation is a method for introducing energy into a finite-
difference time-domain (FDTD) simulation. It defines a boundary, identified as the TFSF bound-
ary, which divides the computational domain into two regions: a total-field (TF) region which
contains both the incident field and any scattered field, and a scattered-field (SF) region which
contains only scattered fields. Scatterers are confined to exist within the TF region. Throughout
the grid the fields must have self-consistent update equations meaning that nodes in the TF region
must depend on the total field at neighboring nodes while nodes in the SF region must depend on
the scattered field at neighboring nodes. However, nodes which are tangential to the TFSF bound-
ary will have at least one neighboring node in the region different from their own. Rectification of
this inconsistency is what drives the TFSF method.

Given knowledge of the incident field which should exist at nodes tangential to the TFSF
boundary, one does the following. For the update of a node which is in the TF region and depends
on a neighboring node in the SF region, the incident field is added to that neighboring node.
Conversely, for the update of a node which is in the SF region and depends on a neighboring
node in TF region, the incident field is subtracted from that neighboring node. In this way the
TFSF boundary acts as a Huygens surface and was originally described as such by Merewether et
al. [1].
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In order to implement the TFSF method, one must know the incident field at every time-step
at all the tangential nodes adjacent to the boundary. Historically the TFSF method has been used
to introduce plane waves into the grid, but in theory any incident field could be realized. In this
work we restricted ourselves to plane waves. In the continuous world, the analytic description of
pulsed plane-wave propagation is relatively trivial. Unfortunately, because of the inherent differ-
ence between the way in which waves propagate in the FDTD grid and the way in which they
propagate in the continuous world, one should not simply use the continuous-world expression for
the incident plane wave. If one were to do that, the mismatch between the analytic description
of the incident field and how the incident field actually propagates within the grid causes fields to
leak across the TFSF boundary (in the absence of a scatterer, no fields should be present in the SF
region). Fortunately there is a relatively simple fix to this problem.

An auxiliary one-dimensional (1D) FDTD simulation can be implemented to model the prop-
agation of the incident plane wave. If the propagation direction of the incident field in a higher-
dimensional grid is aligned with one of the grid axes, the auxiliary 1D grid can be used to describe
exactly the incident field at all nodes adjacent to the TFSF boundary. There is no leakage. A
detailed discussion of the implementation can be found in [2].

When the incident field propagates obliquely, a one-dimensional auxiliary grid can still be used
to describe, at least approximately, the incident field. However, using these fields in the higher-
dimensional simulation has inherent errors. First, interpolation must be used to find the fields at
points on the 1D grid corresponding to the projected locations of nodes in the higher-dimensional
grid. Implementation details for oblique propagation can also be found in [2]. Second, the disper-
sion which the fields experience in the ID grid does not correspond to the dispersion experienced in
the higher-dimensional grid. To help rectify this, Guiffaut and Mahdjoubi [3] proposed a technique
which modified the Courant number in the auxiliary grid so that the dispersion nearly matched that
of the higher-dimensional grid (see also Sec. 5.9.1 of [2]). Nevertheless, there are still differences
between propagation in the two grids and the need for interpolation, which inherently introduces
errors, still exists. Third, the orientation of vector fields (i.e., the velocity field in acoustic simula-
tions and either the electric of magnetic field in electromagnetic simulations) is not the same in the
FDTD grid as it is in the continuous world. This fact is discussed in [4,5] and had been considered
previously in [6,7]. The orientation is dependent on frequency and hence a simple scalar cannot
be used to project field components from a 1D grid to a higher-dimensional grid.

Instead of employing an auxiliary grid, two recent papers proposed a technique where the
incident field is obtained analytically by way of the FDTD dispersion relation [4,5]. To distinguish
this approach from that which relies upon auxiliary grids, we label this approach the analytic field
propagation (AFP) TFSF technique. Moss et al. considered the situation of an electromagnetic
field incident on layered uniaxial anisotropic media and hence had to account for the reflection and
transmission coefficients of the layers [4]. Schneider restricted consideration to propagation in a
homogeneous space [5].

Because of the complexity of the media being considered by Moss et al., the equations given
in their work masked the simplicity which pertains for problems involving isotropic media and
problems involving a plane satisfying a Dirichlet boundary condition. A Dirichlet boundary in
an electromagnetic simulation is equivalent to either a pressure-release or rigid boundary in an
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acoustic simulation depending on the polarization assumed. We identify such a boundary a perfect
electrically conducting (PEC) boundary. In this report we examined these problems in some detail
and obtained equations which are significantly simpler than those presented for anisotropic media.
As described both by Moss et al. [4] and Schneider [5], the AFP TFSF method requires Fourier
transforms to obtain the incident field. However, neither of those papers provided details of the
type of transform actually need. In fact, an exact implementation requires not a discrete Fourier
transform but rather a discrete-time Fourier transform (which involves a continuous integral). As
will be discussed, this transform can be approximated by a discrete transform, but one should be
aware of the inherent approximation.

This report begins by discussing the relationship between acoustic and electromagnetic FDTD
simulations. The remainder of the work is presented in terms of electromagnetics. An overview
of the AFP TFSF technique is then presented that discusses the issues concerning the Fourier
transform. We then consider problems involving a PEC plane or a boundary between two half
spaces. Both TE and TM polarization are considered. As will be shown, these two-dimensional
simulations are analogs of the acoustic problem where the single scalar field (i.e., the magnetic
field in the case of TE polarization and electric field in the case of TM polarization) can be equated
with pressure and the vector field with velocity. Initially we restrict ourselves to lossless material
but then consider lossy material and incidence angles beyond the critical angle. Finally, there is
a discussion of the use of the the AFP TFSF technique in three dimensional simulations. Part of
the work described here has been accepted for publication in the IEEE Transactions on Antennas
and Propagation. Another paper, also based on the work presented here, has been submitted to the
same journal and is currently in review.

2 Relationship between Acoustic and Electromagnetic FDTD
Grids

The FDTD method employs finite-differences to approximate Ampere's and Faraday's laws. Am-
pere's and Faraday's laws are first-order differential equations which couple the electric and mag-
netics fields. As we have seen, with a judicious discretization of space and time, the resulting
equations can be solved for "future" fields in terms of known past fields.

Other physical phenomena are also described by coupled first-order differential equations
where the temporal derivative of one field is related to the spatial derivative of another field. Both
acoustics and elastic wave propagation are such phenomena. Here we will consider only acous-
tic propagation. Specifically we will consider small-signal acoustics which can be described in
terms of the scalar pressure field P(x, y, z, t) and the vector velocity v(x, y, z, t). The material
parameters are the speed of sound Ca and the density p (both of which can vary as a function of
position).

The governing acoustic equations in three dimensions are

aW
= -pc'V.v, (1)

Ot 1
Tt = (2)
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or, expanded in terms of the components,

at ( ax +a+ Ovz' (3)

=v X 1 p (4)
at p ax '

avy 1 ap (5)
at p y'

_- = p (6)

Equation (2) is essentially a variation of Newton's second law, F = ma, where instead of accel-
eration a there is the derivative of the velocity, instead of mass m there is the mass density, and
instead of force F there is the derivative of pressure (which is a force per area and the negative
sign accounts for the fact that if pressure is building in a particular direction that tends to cause ac-
celeration in the opposite direction). Equation (1) comes from an equation of state for the material
(with various approximations assumed along the way).

Taking the divergence of (2) and interchanging the order of temporal and spatial differentiation
yields

a -v -- V2P. (7)
aN p

Taking the temporal derivative of (1) and using (7) yields

02 P 2 0
_r5-t = -PCa5-V v cV 2 P. (8)

Rearranging this yields the wave equation

1 02 P
V2P _ 10. (9)Ca2 Ot2

Thus the usual techniques and solutions one is familiar with from electromagnetics carry over to
acoustics. For example, a harmonic plane wave given by

P(x, y, z, t) = Poe-jk'r eiWt (10)

is a valid solution to the governing equations where Po is a constant and the wave vector k can be
written

k = kxax + kyay + kza_ = kak = (w/ca)ak. (1 1)

Substituting (10) into (4) and assuming exp(jwt) temporal dependence yields

jwvx =I (-jkx)P. (12)
P

Rearranging terms gives

vx = (13)

pw
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Following the same steps for the y and z components produces

vy = LY P, (14)pw
vz = (15)

pw
Thus the harmonic velocity is given by

v = vxax +Vay+ vza• = -- (k.a. + kua. + kza,)P - Pak. (16)
pw pw

Since the wave number, i.e., the magnitude of the wave vector, is given by k = WICa, the ratio of
the magnitude of pressure to the velocity is given by

=P~a (17)

The term on the right-hand side is known as the characteristic impedance of the medium which is
often written as Z.

2.1 Governing FDTD Equations

To obtain an FDTD algorithm for acoustic propagation, the pressure and components of velocity
are discretized in both time and space. In electromagnetics there are two vector fields and hence
six field-components which have to be arranged in space-time. In acoustics there is one scalar field
and one vector field. Thus there are only four field-components.

To implement a 3D acoustic FDTD algorithm, a suitable arrangement of nodes is as shown
in Fig. 1. A pressure node is surrounded by velocity components such that the components are
oriented along the line joining the component and the pressure node. This should be contrasted
to the arrangement of nodes in electromagnetic grids where the components of the magnetic field
swirled around the components of the electric field, and vice versa. In electromagnetics one is
modeling coupled curl equations where the partial derivatives are related to behavior orthogonal to
the direction of the derivative. In acoustics, where the governing equations involve the divergence
and gradient, the partial derivatives are associated with behavior in the direction of the derivative.

The arrangement of nodes in a 2D grid is illustrated in Fig. 2. (This should can be compared
to the 2D electromagnetic grids which will be discussed later, i.e., Fig. 6 for the TEz case and Fig.
8 for the TM' case.) Because pressure is inherently an acoustic field, there are not two different
polarization associated with 2D acoustic simulations-nor is there a notion of polarization in three
dimensions.

In addition to the spatial offsets, the pressure nodes are assumed to be offset a half temporal
step from the velocity nodes (but all the velocity components exist at the same time-step). The
following notation will be used with an implicit understanding of spatial offsets

p(x,y,z,t) = P(mAx,nnAy,pAz,qAt) = Pq[m,n,p], (18)

vX(x,y,z,t) = vz([m+1/2]Ax,nAy,pAz,[q+ 1/2]At) = vq+"/2[m,n,p], (19)

v.(x, y, z, t) = vv(mAx,[n+ 1/2]Ay,pAz,[q+ 1/2]At) = vq+1/ 2[m, n,,p], (20)

v(x, y,z,t) = v,(mAx, nAy,[p+ 1/2]Az,[q+ 1/2]At) = vq+ 1 /2 [m, n, p]. (21)
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Z

vz(m,n,p+ 1/2)

P(m,n,p)( Vy(m,n+1/2,p) y

v,,(m+ ll2,n,p)

Figure 1: An acoustic unit cell in three dimensions showing the arrangement of velocity nodes
relative to the pressure node with the same spatial indices.

We will assume the spatial step sizes are the same, i.e., Ax = Ay = Az = 5.
Replacing the derivatives in (3) with finite differences and using the discretization of (18)-(2 1)

yields the following update equation:

q-1/2q-/
P~[~n~] -P~lm~~p]- , v,,t "[rn, n, p] - "4-/[m, - l,n p] +

V-I/ 2 [m,n,p] - v-/[m, n,p - 1]). (22)

The sound speed and the density can be functions of space. Let us assume that the density and
sound speed are specified at the grid points corresponding to the location of pressure nodes. Addi-
tionally, assume that the sound speed can be defined in terms of a background sound speed co and
a relative sound speed c,:

Ca = CrCO. (23)

The background sound speed corresponds to the fastest speed of propagation at any location in the
grid so that cr < 1. The coefficient of the spatial finite-difference in (22) can now be written

PC2at = pccoQ c0  t= pc coSS (24)

where, similar to electromagnetics, the Courant number is Sc = coat/S. The explicit spatial
dependence of the density and sound speed can be emphasized by writing the coefficient as

p[m, n, P]C2 [m, n, p]coSc (25)
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0 "- 0 - 0 '-•-0 -- *- 0 - 0 - 0

t t t t t t t
0 '-•0 --•0 --•0 -- "0 - 0 " 0

"t "t' t t t t t

! indices \! indices \

" " t"".e "ts t t t t
indices \ indices \V indices \!c ~-o .- !O 0 - 0 -- 0 - 0

v(m+12,n)x (, n)0 0 ... xmn

P(m,n) Pr (m, n)
ZX Z X

Figure 2: The arrangement of nodes in a 2D acoustic simulation. In a computer FDTD implemen-
tation the nodes shown within the dashed enclosures will have the same spatial indices. This is
illustrated by the two depictions of a unit cell at the bottom of the figure. The one on the left shows
the nodes with the spatial offsets given explicitly. The one on the right shows the corresponding
node designations which would be used in a computer program. (Here Pr is used for the pressure
array.)
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where p[m, n, p] is the density which exists at the same point as the pressure node P[m, n, p]
and c, [im, n, p] is the relative sound speed which exists at this same point. Note that the Courant
number Sc and the background sound speed co are independent of position. Furthermore, the entire
coefficient is independent of time.

The update equation for the x component of velocity is obtained from the discretized version
of (4) which yields

Vq+1/2 -1/2 IAt p
vX+I[mn,p] = il/[m,n,p] - _t (Pq[m + 1,n,p] - Pq[m,n,p]) (26)

The coefficient of this equation does not contain the Courant number but that can be obtained by
multiplying and dividing by the background sound speed

1lAt 1lcoat _1I = 1-SI. 
(27)

We wish to define the density only at the pressure nodes. Since the x-component of the velocity
is offset from the pressure a half spatial step in the x direction, what is the appropriate velocity
to use? The answer, much as it is in the case of an interface between two different materials in
electromagnetics, is the average of the densities to either side of the pressure node (where the
notion of "either side" is dictated by the orientation of the velocity node). Therefore the coefficient
can be written

1 2S, (28)
(p[m+1,n,P]+P[m,n,P] CO (p[m + 1, n,p] + p[m, n,p])co'

The update equations for the velocity components can now be written as

Vx1/ 2 [m, n,,p] = v.-1/2[ m,n,p] -

2Sc (Pq[M + 1, n,p] _ Pq[m,n,p]) (29)
(p[m,[,,p] + p[mn + 1, n,np])p

q+/ =m ,A V -/ n, p] -

2Sc (pq [mnp+ ,1] _ Pq [m, n, p]). (31)
(p[m, n, p] + p[m, n + 1,p])co

Vq+ l/2 [ P] aq-1/2

(pm~~p +p~~np+1]c (Pq [m, n, p + 1]-_ Pq[m, n, p]). (31)

2.2 Two-Dimensional Implementation

Let us consider a 2D simulation in which the fields vary in the x and y directions. The grid would
be as shown in Fig. 2 and it is assumed that Ax = Ay = 6. Assume the arrays pr, vx, and vy
hold the pressure, x component of the velocity, and the y component of the velocity, respectively.
Assume the macros Pr, Vx, and Vy have been created to facilitate accessing these arrays. The
update equations can be written

8



Vx(m,n) = Vx(m,n) - Cvxp(m,n)*(Pr(m+1,n) - Pr(m,n));

Vy(m,n) = Vy(m,n) - Cvyp(m,n)*(Pr(m,n+1) - Pr(m,n));

Pr(m,n) = Pr(m,n) - Cprv(m,n)*((Vx(m,n) - Vx(m-l,n))

+ (Vy(m,n) - Vy(m,n-1)));

where the coefficient arrays are given by

C• (m,n) = (Sl+ 2S, (32)
PCO (+2, + 1, n] + p[m, n])co(

C• ~(m, ) = 1 ( 2S,
po (mn+=)PCO (p[m, n] + p[m, n + 1])co' (33)

Cp,.,(m,n) = p[m,n]c'[m,n]coS,. (34)

These update equations are little different from those for the TMz case. The TMz update
equations are

Hy(m,n) = Hy(m,n) + Chye(m,n)*(Ez(m+1,n) - Ez(m,n));

Hx(m,n) = Hx(m,n) - Chxe(m,n)*(Ez(m,n+l) - Ez(m,n));

Ez(m,n) = Ez(m,n) + Cezh(rm,n)*((Hy(m,n) - Hy(m-l,n))
-(Hx(m,n) - Hx(m,n-1)));

There is a one-to-one mapping between these sets of equations. One can equate values as follows

V, 4=ý- Hy, (35)

vY = H., (36)

P € E,, (37)

Cvx € Chye, (38)
Cvyp €4• Chle, (39)

Cp,., <=. Cezh. (40)

Thus, converting 2D programs which were written to model electromagnetic field propagation to
ones which can model acoustic propagation is surprisingly straightforward. Essentially, all one has
to do is change some labels and a few signs.

For TEZ simulations, the updated equations for a lossless medium are

Hz(m,n) = Hz(m,n) +
Chze(m,n) * ( (Ex(m,n+l) -Ex(m,n) ) - (Ey(m+l,n) -Ey(m,n)));

Ex(m,n) = Ex(m,n) + Cexh(m,n)*(Hz(m,n)-Hz(m,n-1));
Ey(m,n) = Ey(m,n) - Ceyh(m,n)*((Hz(m,n)-Hz(m-l,n));

9



In this case the conversion from the electromagnetic equations to the acoustic equations can be
accomplished with the following mapping

v ., Ey, (41)

VY - E., (42)

P € H,, (43)

Cva€p Ceyh, (44)
C 4,yp €* Cezh, (45)

Cpri j* Che. (46)

For three dimensions 3D acoustic code is arguably simpler than the electromagnetic case since
there are not two vector fields. However porting 3D electromagnetic algorithms to the acoustic
case is not as trivial as in two dimensions.

3 The AFP TFSF Method

Any implementation of a TFSF boundary requires knowledge of the incident field at nodes adjacent
to the boundary for every time-step of the simulation. Conceptually, the AFP version of the TFSF
method is quite simple in that it parallels the usual description of propagation in the continuous
world.

In the continuous world, the spatial dependence of a harmonic plane wave is given by exp(-jk.
r) where k is the wave vector and r is the position vector (exp(jwt) temporal dependence is
understood). For a pulsed plane wave each spectral component can be weighted by the appropriate
amount to give the frequency-domain representation. So, for example, if a field component were
found at the origin to be given in the time-domain by f(t), its frequency-domain representation
would be F(w) = F'[f(t)] where YFl is the Fourier transform. The field at an arbitrary point r
merely has to account for the displacement from the origin. Thus in the frequency domain the field
is given by F(r, w) = F(w) exp(-jk r). The time-domain signal at r is the inverse transform of
this, i.e.,

1 f(W)ejk0 rejw "
f(r, t) = F (47)

Assuming lossless media, in the continuous world the magnitude of the wave vector is given by w/c
where c is the speed of light. Thus it is straightforward to evaluate (47)-the complex exponential
involving space merely represents a shift operation.

In the discretized world of the FDTD method, one can follow steps which parallel those in the
continuous world. However, finding the field at an arbitrary point is complicated by the fact that
the wave vector in the grid is governed by the FDTD dispersion relation which does not, in general,
have a closed-form solution. Nevertheless, it is relatively easy to solve for the wave vector and to
perform the necessary transforms to calculate the incident field wherever it is needed.

Since the input signal is not periodic, one cannot use a discrete Fourier transform (which in-
herently assumes a periodic signal). Instead, for a transient signal, one must use the discrete-time
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Fourier transform [8]. The inverse and forward transforms of the discrete signal f (qAt) = f [q] are
given by

f[q] = 1fj F(w')eJw'qdw, (48)

2 0

F(w') = e f[q]e-w'q. (49)
q=-oo

Note that, despite this transform pertaining to a discretized world, the frequency w' is a continuous
variable. In FDTD, any "source function" f[q] can be assumed to start at q = 0 and be limited to
a maximum of N, time steps (i.e., the source function has either decayed to zero at time-step N,
or is switched off at time-step N 8-this could correspond to the time at which the simulation is
terminated). Thus (49) can be written

N,-1

F(w') = • f[q]e-waq (50)
q=0

For the sake of illustration, consider a 1D computational domain in which the source-function
f[q] represents the time-varying field at some point. Further assume this field is propagating in the
positive x direction. The field at a point which is m spatial steps away from where f[q] is measured
would be given by

f[m,q] = T j F(w')e-jkbmejw'qdw (51)

where k is the numeric wavenumber and J is the spatial step size. Equation (51) is the ID FDTD
analog of (47). In one dimension a closed-form expression can be obtained for kJ:

kJ = 2 sin- 1 (- sin ( ))(52)

where S, is the Courant number. (One can equate w' with the more familiar wAt which typically
appears in the FDTD dispersion relation, but the fact remains that w' varies continuously in the
integral of (51).)

Knowing the direction of propagation and the incident field at a given point (i.e., f[q]), one
can calculate F(w') using (50) and then find the field at an arbitrary point fi[m, q] using (51). This
was done in [9] where it was shown how this approach could predict the superluminal component
of FDTD propagation. It was speculated in [9] that this technique could be used to realize a
TFSF boundary which would essentially be perfect. Indeed, this approach is at the core of the
work by [4] and [5], but neither paper provided details concerning the Fourier transforms nor were
details discussed in [9]. (It should also be pointed out that Ma et al. [10] have obtained an analytic
expression for the field at an arbitrary point in the FDTD grid due to a source which is impulsive
both in time and space. That differs from the solution here in that plane waves are of interest.
These plane waves may be impulsive in time but cannot, by definition, be impulsive in more than
one direction.)

11



Substituting (49) (after a change of index from q to q') into (51) and rearranging yields
N,-1 Io27r

f[m, q] = N1 f [q]2I e-jk'mejw'(q-q')dWi" (53)
q'=O

This equation is exact and the integral possesses some interesting properties (for example, it is
zero when m > (q - q')). Note that the source function f[q'] is assumed to be zero for q' >
N, but fi[m, q] can be evaluated for any value of q, i.e., it is not bound by N,. Unfortunately
this equation cannot be easily evaluated efficiently nor can it be evaluated without resorting to
numerical approximations.

An efficient calculation of this expression is obtained by employing standard discrete Fourier
techniques (as was done in [4, 5, 9]). This is equivalent to approximating the integral in (51)
as a Riemann sum. Let us assume that Nt equally spaced samples of the integrand are used to
approximate the integral. In this case the frequency w' is given by 27rn/Nt (where 0 < n < Nt - 1)
and dw' is approximately 21r/Nt. An approximation of (51) is thus

f[m, q] 2- E F e), --. (54)27 =0 \ t} Nt

Regrouping terms and employing (50) yields

Nt-i ,12n
j 2,-n , q - .2_

fi[m, q] ' E {iEf[q'/e-_t e-k me3 Nt . (55)
n=0 q1=O

If one sets N, equal to Nt (which can be accomplished by zero-padding the source function f [q'] to
the necessary length), then the term within braces is recognized as the discrete Fourier transform
of the source function. This transform is multiplied by exp(-jk6m) and then the inverse discrete
Fourier transform is taken. Since discrete Fourier transforms can be calculated efficiently, (55) can
be calculated efficiently.

In the implementation of a TFSF boundary, one must calculate fields which are offset both
spatially and temporally. Even though two fields are temporally offset by half a time step they
still use identical samples of the source function f [q']. The offset is accounted for in the inverse
transform, i.e.,

r 1 j Nt-i M+ 2,,(q÷1/2)

f -l , q + = E " 2 -
2 2 n=O

Nt-i

= E F(Wn) e-jk/2eJ e- dine, (56)
n=0

where F(wn) is the term in braces in (55). (When calculating the various field components one
must also account for the characteristic impedance and the orientation of the fields. This is dis-
cussed more later.)

One question which remains is the value which should be chosen for Nt to obtain a good
approximation of the exact integral. Naturally, the more points the better the approximation will
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be, but one can obtain rough guidelines as follows. Using discrete transforms is equivalent to
assuming the source function is periodic. However, one does not want this periodic behavior to be
evident in the simulation. Hence the discrete Fourier transforms must be long enough (i.e., Nt must
be great enough) so that virtually all the energy associated with the incident field has traversed the
total-field region before the incident field can repeat itself.

For example, consider an incident pulse which is non-zero for 100 time-steps (N, = 100)
and which is incident upon a TF region which is 50 spatial steps wide. The inverse transform
associated with the last point in the TF region must be sufficiently long so that it can model the
time it takes for the incident pulse to propagate to that point and the time it takes for the pulse to
completely pass this point. Although the pulse started by being bound by 100 time steps, because
of the dispersion in the FDTD grid, it will take more than 100 time steps for the pulse to pass any
point. The more distance the pulse has to travel, the more it will disperse. In fact, as discussed
in [5, 11, 12], the group velocity in the FDTD grid goes to zero at the coarsest discretizations and
hence it arguably takes an infinite time for a pulse to pass completely any point. Nevertheless, in
practical applications the coarsest discretization are not of interest. By using a reasonable Courant
number and a reasonable discretization of the incident pulse, there will be little spectral content
at the coarsest discretization. Thus, in this example, a discrete Fourier transforms of 1024 points
(i.e., Nt = 1024) would almost certainly be sufficient to describe the incident pulse over the entire
TFSF boundary.

The FDTD simulation itself can proceed for any number of time steps. If a highly resonant
structure were being illuminated and the user wanted to run the simulation for a hundred-thousand
time steps, or more, that would be irrelevant to the implementation of the TFSF boundary. The
incident field on the boundary would merely be assumed to be zero after 1024 time steps.

Generalizing (51) to higher dimensions is trivial in that it is nearly identical to (47)-the only
differences are the limits of the integral and the use of the discrete wavenumber components. For
example, assuming a uniform grid in which A., = = J, let the field f [m, n, q] represent the
fields at the point r = (mJ, nr) and time qAt. Given the field f[q] at the origin which has Fourier
transform F(w'), f[m, n, q] is given by

1 f02'
f[m, n, q] = j F(w')e-jyrejwqdW1. (57)

In this case the components of the numeric wave vector k must be calculated from the the 2D
dispersion relation but the integral can again be approximated with discrete transforms as done in
(55). We note that the superluminal wave vector components discussed in [9, 13] are not incorpo-
rated in the results to be shown later. These components, which occur at the coarsest discretizations
supported by the grid, experience exponential decay as they propagate. Discarding them from the
solution slightly increases the amount of leaked fields but this is not a concern in practice (owing to
the associated frequencies not being ones which would be of interest and the inherent exponential
decay).

Equation (51) gives the spatial and temporal dependence of a single field component. Given
a single field component, the polarization, and the direction of propagation, all the other field
components can be computed. Despite the characteristic impedance of the FDTD grid being exact,
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such a computation is more involved than in the continuous world because of the non-orthogonality
of the electric field, magnetic field, and wave vector. Details of the relationship between these three
quantities are discussed in [5].

When a halfspace discontinuity is present, one must account for the reflected or, where appli-
cable, the transmitted fields. To demonstrate this, we first consider the case of illumination of a
Dirichlet planar boundary, i.e., a PEC plane where there is no transmitted field and the reflection
coefficient is - 1. We then consider penetrable media which must incorporate the transmission and
reflection coefficients.

4 TEZ Polarization and a PEC Plane

Consider a 2D FDTD grid with TEZ polarization in which a PEC plane is assumed, at least insofar
as the incident field is concerned, to span the computational domain. This scenario is depicted
in Fig. 3. The acoustic pressure can be equated with the magnetic field and the velocity with the
electrics field (with an appropriate change of signs). The PEC plane is thus equivalent to a rigid
boundary at which the normal component of velocity goes to zero. We define the "incident field"
as being the sum of the incoming field (i.e., the field whose x-component of the wave vector is
positive) and the reflected field. By doing this, in the absence of any additional scatterers other
than the PEC plane itself, the SF region would contain no fields. It is important to note that in
any given simulation there are no restrictions on the contents of the TF region. In fact, the PEC
plane does not even have to span the TF region. Thus, for example, one can consider the fields
associated with obliquely illuminated apertures. In the SF region, however, it is required that the
plane is intact and that no other scatterers are present.

Nodes which are tangential to the TFSF boundary and have a neighboring node on the other
side of the boundary must have their update-equations corrected to account for the existence of the
TFSF boundary (see [2] for details). For the situation considered here, the TFSF boundary is only
three-sided. The field is not specified on, or beyond, the PEC. Instead, as is usual when modeling
PEC's, the tangential electric fields along the PEC are set to zero and the FDTD algorithm handles
the rest.

To implement the TFSF method, the incident field contains two plane waves: the "incoming
field" and the reflected field. This scenario is shown in Fig. 4. The "reference point" in Fig. 4 is
essentially the origin at which the user would specify the source function f [q]. Note that this point
does not need to be within the computational domain! Its location is on the PEC and such that
for the given incident angle qOi at the start of the simulation the incoming field has not yet entered
the TF region (but the leading edge of the field sits poised to enter the region). The field at points
along the TFSF boundary are then determined relative to displacement from this reference point in
accordance with (57).

One can easily show that the FDTD reflection coefficient for a PEC plane is identically -1
(relative to the electric field) and the details will not be presented here. Suffice it to say that
the incoming and reflected fields have the same y components of their wave numbers and equal
magnitude but opposite signs for the x components. The Fourier transform of the source function
f [q] is taken to be the spectral representation of the magnetic field for both the incoming and
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Figure 3: Depiction of a TEZ grid containing a PEC plane. The TFSF boundary is drawn with a
dashed lines. The nodes enclosed in rounded rectangles must have their values corrected owing
to a neighboring node being on the other side of the boundary. In the acoustic analog of this
polarization the magnetic field can be equated with the pressure and the electric field with the
velocity. The PEC plane is thus equivalent to a rigid boundary.
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reflected fields. The x and y components of the electric field are found in accordance with the
orthogonality condition discussed in [5]. (The incoming and reflected fields have the same sign for
the x component of the electric field but opposite signs for the y component.) Thus the incident
field is realized by summing two plane waves, each with a common reference point and the same
amplitude. The only difference is the direction of propagation. The calculation of each individual
plane wave follows the details provided in [5]. The superposition of these waves satisfies the
boundary condition dictated by the existence of a PEC plane in the FDTD grid and hence can be
used to realize a nearly perfect TFSF boundary.

To illustrate the behavior of this TFSF implementation, consider a pulsed plane wave propagat-
ing at an incident angle of 60 degrees. The field is traveling in free space and the Courant number
is 95 percent of the 3D limit, i.e., S, = 0.95/v/'-. This Courant number was chosen so that the re-
sults pertain to 3D simulations in which the incident field propagates orthogonal to one of the axes
(the factor of 95 percent was chosen somewhat arbitrarily-stability is no more of a concern with
this TFSF technique than it is with the surrounding grid). The pulse is a Ricker wavelet discretized
so that there are 10 cells per wavelength at the most energetic frequency. With this discretization
there is a substantial amount of energy at coarser discretizations (see [5] for further discussion
of this source function). One would anticipate this pulse would suffer substantial dispersion as it
propagates, something which is undesirable in practice but good for testing the performance of a
TFSF implementation. Fig. 5 shows a computational domain which is 180 by 200 cells. A vertical
PEC exists 105 cells from the left. The SF region is 15 cells thick. Figure 5(a) shows the magnetic
field 150 time-steps into the simulation. The images show the log base 10 of the absolute value
of the field and have been scaled so that it is visible over three orders of magnitude. In Fig. 5(a)
the incoming field has already encountered the PEC. The TFSF boundary is aware of the reflected
field and there is virtually no leakage through the boundary. Fig. 5(b) shows the magnetic field at
350 time steps. The dispersion of the incoming field is clearly evident as the width of the pulse
is greater than it had been at 150 time-steps. This dispersion is subsequently evident in the field
reflected by the PEC plane. The AFP TFSF implementation automatically incorporates these nu-
meric artifacts. Using a discrete Fourier transform of 1024 points, the peak magnetic field leaked
across the boundary in this case is approximately five orders of magnitude down from the peak
value of the magnetic field (i.e., 100 dB down from the peak). If one were to use a more reasonable
discretization of 20 cells per wavelength at the peak frequency of the pulse, the leaked field drops
to 180 dB down from the peak of the incident field. (Note that in Figs. 5(a) and (b) there is no
reason to extend the computational domain beyond the PEC boundary since no fields propagate
past the PEC. It was done here merely for the sake of consistency with (c) and (d).)

Figure 5(c) also shows the magnetic field over the computational domain at time-step 350, but
in this case there are two slits in the PEC plane. Each slit is 10 cells wide and their centers are
separated by 40 cells. The field scattered back to the left of the PEC as well as the field which
passes through the slits are clearly evident. The implementation of the TFSF boundary is oblivious
to the actual contents of the TF region (or to anything beyond the PEC plane).

The diffraction from infinite wedges was studied using the FDTD method in [14, 15]. In that
work the TFSF boundary passed through the perfectly matched layer (PML) which terminated the
grid. For a field originating in the PML, an amplification factor had to be found to compensate
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TF Region

-----------in ------ -- --- --

Figure 4: To model a PEG boundary, the "incident field" contains both an incoming and a reflected
field. The width of the TF region is hg. The origin, or reference point, for the sake of calculating

the incident field is a distance hf cot(Oi) from the bottom of the TF region. This ensures that the
incoming field, which is specified by the source function f[q], is completely outside of the TF
region at the start of the simulation. The bending of, and gap in, the PEC boundary is used to
emphasize that there are no restrictions on the contents of the TF region. Inhomogeneities can be
present throughout the TF region.
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Figure 5: Snapshots of the magnetic field at time-steps (a) 150 and (b) 350. (c) Magnetic field

at time-step 350 when two slits are present in the PEC plane. (d) Magnetic field at time-step 350

showing diffraction from the edge of a semi-infinite plane. The incident angle is 60 degrees with

respect to horizontal.
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for the PML loss. Using the AFP TFSF technique, it would not be necessary to have an incoming
field start within the PML owing to the fact that the AFP TFSF technique already includes the
reflected field. This is illustrated in Fig. 5(d) which shows the diffraction from a "knife edge."
This snapshot is also of the magnetic field and at time-step 350. In this case the TFSF boundary
is two-sided. One-side, which is drawn vertically, is terminated one cell before the top edge of the
computational domain where a second-order Higdon ABC is used. The grid termination would
benefit from the use of a PM!L as described in [14, 15], but no amplification factors would be
needed and the reflected field would be completely present at the start of the TFSF boundary. Thus
the reflected field would not have to build up from the start of the PEC plane which is within the
PML nor would it suffer the corresponding diffraction at that leading edge-there is no "leading
edge" of the PEC in the AFP TFSF implementation for the incoming field to encounter. Instead of
the knife-edge shown here, wedges could be studied just as easily (and, as will be more clear after
considering dielectric boundaries, the technique can be applied to penetrable wedges too).

The AFP TFSF technique allows the calculation of the incoming and/or the reflected field at
an arbitrary point. The technique does not care if the point is actually on the TFSF boundary or
even if it is within the grid. Thus, when it comes to recording, for example, the diffracted field,
the observation points can be placed anywhere in the computational domain. One can subtract
the incident or reflected field from the recorded field. In this way, one does not have to restrict
observation points to the scattered-field region.

There are other problems which could benefit from the application of the AFP TFSF boundary
described here. For example, it provides an alternative way to study the scattering from randomly
rough surfaces than the one presented in [16]. In [16] the incident field employed a Gaussian-
tapered plane wave as described in [17]. The Gaussian taper was necessary to minimize diffrac-
tion errors which would be present if an obliquely incident plane wave were to encounter a finite
surface-only a finite amount of the rough surface can be included in any particular simulation. A
Gaussian-tapered plane wave is not a true solution to the wave equation. Additionally, the taper is
such that a very large computational domain must be used to ensure the fields are small at either
end of the tapered wave. On the other hand, using the TFSF implementation described here, the
surface is effectively infinite (although the surface roughness must be contained within the TF re-
gion). The surface roughness would have to be "turned on" (i.e., ramped up and down so that it
met the edges of the planar surface at the TFSF boundary), but this can be done in much less space
than the Gaussian tapering of the incident plane wave. Unlike with a Gaussian-tapered incident
field, in the AFP TFSF method the incident field is a solution to the wave equation. Thus the AFP
TFSF boundary has the potential to provide much more efficient and more accurate solutions to
these types of problems.

5 TEZ Polarization with a Dielectric Halfspace

For a field incident on a penetrable halfspace, one must account for both the reflected and trans-
mitted fields and hence must know the reflection and transmission coefficients. Consider a plane
wave propagating obliquely in the 2D TEZ grid shown in Fig. 6. The non-zero fields are E•, Ey,
and H, (this corresponds to the polarization identified as TM in [4]). Again, the acoustic pressure
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Figure 6: Portion of the TEZ grid. An interface exists at x = 0. To the left of the interface
the permittivity and permeability are el and zl, respectively, and to the right they are E2 and M2 .

Along the interface the permittivity is E, Magnetic fields are unambiguously in the first or second
medium and hence always use either pi or /12. The acoustic analog of this simulation equates the
pressure with the electric field and the velocity with the magnetic field.

can be equated with the magnetic field and the velocity can be equated with the magnetic field. For
the sake of simplicity, assume a uniform grid where A, = AY = 6. The computational domain
consists of two half-spaces where the permittivity and permeability are el and 1l, respectively, to
the left of the interface at x = 0 and E2 and /12 to the right. Throughout the following a subscript 1
will be used to indicate quantities to the left of the interface and a subscript 2 will indicate quanti-
ties to the right. The Ey nodes along the interface have a permittivity of Ea, the value of which is
left arbitrary for now.

We adopt the discrete calculus notation described in [5] (which differs slightly from that use
in [4]) and start with the description of an arbitrary harmonic wave. The magnetic field is given by

fH = a-f-. = af-ioe-j(km•+kn6 ) ewqA

= o , (58)

where, for propagation at an angle O relative to the x axis, the numeric wave vector k is

k (k., ky) = k (cos q, sin ), (59)
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w is the frequency, q is the temporal index, and m and n are the spatial indices in the x and y
directions, respectively. The spatial dependence is given by exp(-jk • r) where r = (mj, nj) (m
and n are not restricted to integer values and can be offset by appropriate fractional amounts to
account for the staggering of the grid). The corresponding electric field is given by

E = aEk + ak,, = (axEox + auJkou) 6-ireiwqAt
=Eoe-J-rejwqAt. (60)

The vector t 0 and scalar H0 are constants for a given frequency (but are themselves functions of
frequency). A tilde indicates a numeric quantity while a caret implies a quantity is in the frequency
domain and may be complex.

Let the shift operator s- shift the 6-index by +1/2 where 6 c {x, y, t}. For example,

s+k = toe-j(kx(m+1/2)6 +kyn 8 )e•wqAt = e-jkxc/ 2 Et (61)

Conversely, s, shifts the 6-index by -1/2. The discrete difference operator 9• is defined as

(s- - .(62)

For plane-wave propagation, the discrete difference operators can be represented by multiplicative
functions. When ý is either x or y one obtains

.2 . kC6
CE= -jsin jsin 2-jKKE. (63)

Similarly, the temporal finite difference yields

OtE = j 2 sin --j--) it jiQF,. (64)

The difference operators acting on the magnetic field yield similar results. In terms of these oper-
ators the dispersion relationship is given by

P2/,t = Kx' + K 2 (65)

Ignoring the shift operators which are common to both sides, for the two-dimensional propa-
gation which pertains here, the FDTD harmonic form of Ampere's law can be written

jE•E, = -jK x fH = -jaxKykz + jayK•[I, (66)

where K = (Kx, Ky) (see [5] for further details including the shift operators which have been
dropped). Thus, the components of the electric field are related to the magnetic field via

JX,= - -Lc ft, (67)

E!= -H. (68)
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As mentioned previously, knowing one field component, the polarization, and the direction of
propagation, one can obtain all the field components. Equations (67) and (68) demonstrate this is
true.

To solve for the reflection and transmission coefficients, one must obtain two independent
equations relating them. As in the continuous world, the phase of the incoming, reflected, and
transmitted fields must match along the interface. This dictates that the angle of reflection must
equal the angle of incidence. Assuming a unit amplitude incoming wave, the incoming, reflected,
and transmitted magnetic fields can be written, respectively,

HZ = aze-ki'r, (69)

fir = -a,,,-jk.r (70)

ft = azTe-jkt'r, (71)

where

ki = ackl cos Oi + aykl sin qi = (ki., k1) (72)
kr = -axkjcosq$j + akjlsinq$, = (-ki•,kj), (73)

ýt = ax k2 cos Ot + ay k2 sin qt = (k 2x, ks,), (74)

ki and k2 are the FDTD wave numbers in the first and second media, respectively, Oi is the incident

angle, qOt is the transmitted angle, and Fte and Tt, are the reflection and transmission coefficients,
respectively. The temporal dependence which is common to all terms has been dropped. Because
of the phase matching which must exist at the interface, k, sin Oi must equal k2 sin Ot, i.e., the y
component of the wave vector is the same throughout the grid.

The total field in the first medium is the sum of the incoming and reflected waves, i.e.,

H. = az e-r- ,te ) (75)
K i K r

E = - x aze-jki'r + - x azFtee-jkr. (76)

The total field in the second medium is given by the transmitted field. The transmitted electric field
is

- - x aztee-jk2r. (77)
?ýE2

The vectors Ki, K', and Kt are given by (KI,, Ky) (-Ki., Ky), and (K 2., Ku), respectively.
Because the tangential phase is the same for all the fields, it is also true that Ky is the same for all
the fields.

Note that only E. nodes are present at the interface. Nevertheless, as in the continuous world,
the tangential electric field must match at the interface, i.e.,

ay• =0 = a.. t L0" (78)
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Expanding these terms yields

Ki. -ik1 sin(Oi)y + K, 1 sin(Oi)y-
-~ e-XPej

K 2X •eeJ•2 Sin(¢,)y (79)

Because the phase must match along the boundary, the complex exponential can be eliminated.
Canceling Q this equation can be written

1 + •, el K2x
i t+ rt (80)

Another equation relating the reflection and transmission coefficients can be obtained from the
update-equation for the electric-field nodes on the interface. The relevant equation is the y com-
ponent of Ampere's law evaluated at x = 0. This was given in (66) but that assumed propagation
in a homogeneous space which is no longer pertinent. Instead, we explicitly write the spatial finite
difference:

JQE'Yj x=O !x=O

6 ýHzI -H. 1~ L=-6/2) .(81)

Unlike before, the spatial finite difference operator 5. cannot be expressed directly in terms of K's
since the difference involves fields on either side of the interface. The electric field in (81) can be
represented as either the transmitted field or the sum of the incoming and reflected fields-the same
result will ultimately be obtained. Using the transmitted field for the electric field and discarding
common phase terms yields

j"a•Te2T - I,' - [eJili - Ftee-1ii]) , (82)

where

k, cos(d)6
•;:• =2 '(83)

K2x k 2 cos(-t)6  (84)
2

Combining (80) and (82) and solving for the reflection coefficient yields

Psi - - -j2 - I KKR
pte= EE2 (85)

K--e-3pIx + -K•--'e6- 2x + j--I Ki.K 2. 6

As the discretization goes to zero, the third term in the numerator and denominator goes to zero, the
complex exponentials approach one, and the Kx's approach the x component of the wavenumber
in their respective media. Thus this expression gives the continuous-world reflection coefficient as
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the discretization goes to zero. It is interesting to note that this is true even though at this point we
have placed no restrictions on Ce, the permittivity used for the nodes along the interface (although
inherent in the derivation is the restriction that Ca cannot be a pathological value such as zero).

Using (80) in (85), the transmission coefficient is found to be

Tte = E-•e-j�, l. + KI-Ze-jrK2. + j'a gKxK 2 •6(86)
62 61 1lE2

Using Euler's formula to expand the complex exponentials and writing the K's in terms of
sines, the reflection coefficient can be written

sin(r,ý2)cos(rx1) _ sin(nvjl)cos(I,2) _ jR
rt, 621 (87)

Ste = sin(sx2) cos(rxl) + sin(Ix1) cOs(I.2) + j z

62 El

where the imaginary term in the numerator and denominator is

R = sin(rixi) sin(tm. 2) (2Ca - 61 - 62). (88)

Note that when Ca is the average of the permittivities to either side of the interface Z is zero. In this
way the imaginary part of the reflection and transmission coefficients is zero. Since the continuous-
world reflection and transmission coefficients are purely real, the imaginary part is an inherent
error. The expressions above effectively constitute a proof that using the average permittivity for
the interface nodes is optimum. For Ca = (C 1 + E2)/2 the reflection and transmission coefficients
become

- e1 sin(K.,2) cos(zj.) - C2 sin(irzi) cos(r'., 2)
rte C1 sin(r, 2) cos(=,.i) + 62 sin(K.i) COS(c. 2)' (89)

Zt 26 2 sin(n.,i) cosQK.,i)
Tt C1 elsin(K, 2) cos(rl.i) + C2 sin(K•,i) cos(K.2) (90)

Despite the change in permeability, these equations are seemingly independent of permeability.
However, the permeabilities dictate the wave numbers in the different media and hence the perme-
abilities are implicitly contained within these equations.

Reflection and transmission coefficients for this polarization were provided in [4] (ref. (72) and
(73) of that paper). The reflection coefficient in that work involves the sum of 28 terms (these terms
involve the product of a total of 17 complex exponentials and 30 sine functions) and was obtained
with the aid of a computer algebra package. The complexity of that expression is, it must be noted,
a consequence of Moss et al. considering more complex media than that assumed here. However,
their final results do tend to obscure the simplicity which pertains to the problem of interest here.
The reflection coefficients which pertain to PML interfaces have also been studied extensively.
Derivations of the numeric PML reflection coefficient can be found in [18-21].

With the reflection and transmission coefficients known, the incident field can be calculated at
an arbitrary point given the source function f [q] at a reference point and the direction of propaga-
tion of the incident field. The location of the reference point is unchanged from that depicted in
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Fig. 4. Here we take the "incident field" to mean the sum of the incoming and reflected field if a
node is to the left of the interface and the transmitted field if the node is to the right. Thus, the
time-domain incident magnetic field for points to the left of the interface are given by

Y' [F(w) (e-Ai'r -tee-ikp')] (91)

where F(w) = .'[f[q]]. As discussed in connection with (56), the offsets of 1/2 are accounted for
in the inverse transforms. From (67) and (68), the x and y components of the electric field are

-1KyF(w)

-. F 1 E -,k('e - Ftee-jk' (92)

Ely [m, n +l,q]=

J7- 1 ( e- i'r + r)]J (93)

These expressions, as well as the corresponding expression for the transmitted fields, are evaluated
for the points adjacent to the TFSF boundary.

To illustrate the behavior of the TFSF boundary, Fig. 7 shows two snapshots of the magnetic
field in a computational domain which is 180 by 200 cells. Free space is to the left and extends
over 90 cells. To the right is a dielectric with a permittivity of 4c0 (Ey nodes along the interface use
a permittivity of 2 .5co). The permeability in both regions is that of free space. This is equivalent
to an acoustic simulation in which the sound speed in the second medium is half that of the first.
The incoming pulse is a Ricker wavelet discretized such that there are 20 cells per free-space
wavelength at the most energetic frequency. This corresponds to 10 cells per wavelength in the
dielectric. The SF region is 15 cells thick, the incident angle is 60 degrees, and the Courant number
is 0.95/v/3-.

Figure 7(a) shows the H, field at 150 time steps when the leading edge of the pulse has first
encountered the dielectric at the center of the bottom of the figure. Figure 7(b) shows the field at
350 time steps. Now the reflected and transmitted field are clearly evident. Since no scatterer is
present in this simulation, no scattered fields are visible in the SF region (the plot uses three decades
of logarithmic scaling). One can clearly see the refraction of the transmitted field. Also, owing to
the higher permittivity of the second medium, the transmitted field suffers more numeric dispersion
than fields in the first medium. (Dispersion in the FDTD grid is dictated by the discretization [2].
The higher permittivity in the second medium results in shorter wavelengths, and hence coarser
discretization and greater dispersion, than in the first medium.) The increased dispersion causes
the transmitted pulse to broaden noticeably as it propagates-one can see that the pulse is thinest
at the interface. One may ask why, at any given time step, the incoming way does not have a
similar appearance to the transmitted field, i.e., thinner to the left and thicker to the right? The
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Figure 7: Snapshots of the magnetic field at time-steps (a) 150 and (b) 350. This is equivalent to

snapshots of the pressure in a fluid-fluid problem where the sound speed in the second medium is

half of that in the first medium

answer is that the incident field along the TFSF boundary is exactly matching the phase speed for

all the spectral components for the particular incident angle, i.e., all spectral components have the

same 0j. At the interface between free space and the dielectric, boundary conditions dictate the

fields must be continuous. However, the free-space phase speeds are not matched to the phase

speeds in the dielectric so as to yield a single transmitted angle. Since the phase speeds are a

function of the frequency, this causes the depth-dependent broadening (or thought of another way,
the frequency-dependent refraction where qbt is a function of frequency).

As with the PEC simulation, the leaked fields are approximately 100 dB down from the peak

interior fields. When a more reasonable discretization is used (i.e., there is not significant energy

with discretizations less than 10 cells per wavelength in the second medium), the peak leaked fields

are more than 180 dB down from the peak of the incident field.

6 TMZ Polarization with a Dielectric Halfspace

Consider the TMZ grid shown in Fig. 8. For this polarization the electric field can be equated with

pressure and the magnetic field can be equated with the velocity. The interface is aligned with

HI, and E, nodes. The arrangement and indexing of nodes is consistent with the TEZ grid in that

both grids could be considered slices of a 3D grid where magnetic-field nodes are centered on the

faces of the Yee cube while electric-field nodes are centered on the edges. For this polarization

both electric- and magnetic-field nodes lie on the interface. The permittivity and permeability

associated with these nodes is ea and M•, respectively, which are left arbitrary for now. We again

wish to find the reflection and transmission coefficients. The incoming, reflected, and transmitted
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Figure 8: Depiction of a TMZ grid with two dielectric halfspaces. This is equivalent to an acoustic
simulation where the electric field can be equated with pressure and the magnetic field nodes can
be equated with the components of the velocity vector.
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electric field are given by, respectively,

tE = aze-jk'r, (94)

= azPtme-k'r, (95)
t azteckt'. (96)

where l", and Ttmn are the TMz reflection and transmission coefficients, respectively. Temporal
dependence is given by exp(jwqAt) and is common to all terms (hence it is not shown explicitly).
The definitions of other terms are as before. The FDTD form of Ampere's law is

jQE•E = a.H/ - OH.. (97)

Because, for the assumed geometry, the phase dependence in the y direction is the same throughout
the grid, O,~, can be replaced with -jK,. For any of the fields, the FDTD form of Faraday's relates
the electric and magnetic fields via

-jQH = -jK x E = -ajKyE_ + ayjKE, (98)

so that the magnetic field components are given by

HQ (99)

Hy T(100)

As before, K. has equal amplitude but opposite sign for the incoming and reflected waves.
Matching the z component of the electric field at the interface dictates that the sum of the

incoming and reflected fields must equal the transmitted field at x = 0. Since the phase must be
equal along the boundary this reduces to

z Z

1± Ftm = Ttm. (101)

The other equation relating the reflection and transmission coefficients is obtained from Ampere's
law applied to the nodes on the interface. Using (99) in (97) and rearranging yields

J L&"a - ) .ý X A,, (102)QI1 ,,=, )=
= L - H 1Y =-612) (103)

where H2l is the y component of the sum of the incoming and reflected waves and A.' is the y
component of the transmitted field. After using (100) to express !ty in terms of E) and discarding
common phase terms, (103) yields

j~ (Qiia~ - 2) Ttm

"-*a K 2 .Tte-iJ2- + Aa K 2 . (e3XIM - Frme-3clx) (104)
[12 TP2
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where the it's are defined in (83) and (84).
Using (101) and (104) to solve for the reflection coefficient yields

Zm Pa .KiejK-1 _ - _ 'K 2 .e-jK2. - j, (Q 2
/ •a _ •- )

r -l ./2._ Ea Y (105)
t Kjxe-jr,1- + K2 ,e-jK2x + j5 (fQ21[,aea - K)" (105)

This can be compared to (45) of [4] which appears to have a typographical error. (The exponent of
the first term in the numerator has the wrong sign. Also the term K•, [with no numeric subscript]
which appears in that expression is never explicitly defined.) The transmission coefficient is

Z 2..Klx cos(rilx)

t K " ixeI• -jIx + 1-a K 2 •e-jK2x + j6 (Q21.a~a - K2) (106)
A.l IX"Lt2 P E - K,,-)

When, as was used in the TEz case, Ea is the average of the permittivity to either side of the
interface, one can write

6(Q 2 1Laea - K2) (Q 2[La6i + Q2 PaE2 - 2K2) (107)

Assuming the permeability p,, is the harmonic mean of the permeabilities to either side of the
interface, i.e., [La = 2111112/(Y1 + 12), the right-hand side of (107) can be written

J ( 2A2 (Q2A161 - 2) + /, -Q 2- KY)+ - 2E2 KY)(108)
2 /j11+[A2 Al A1±12

Using the dispersion relation (65), this becomes

6/'2 Kx + +P52_ K2 . (109)

Employing the definition of the K's (63), allows us to write this imaginary term as

4P2 + sin 2 (Kjx) + 112 sin 2 ( 2x). (110)6P + P2 (l+P2

This final form is convenient because, assuming Ea = (l +6 2)/2 and [,a = 2111112/(11+ t12), when
the complex exponential in (105) and (106) are expanded it is clear that the imaginary part of that
expansion identically cancels the term shown in (110). Thus, the resulting expressions are purely
real and, after employing the double-angle formula, given by

P2 sin(2nqx) - [L, sin(2r,2x)

112 sin(2K lz) + 1i sin(2r'2ý)' (111)

T2/t22 sin(2rlx)
[Li sin(2Kci) + 12 sin(2r,2x) (112)

These expressions reduce to that of the continuous world when the discretization goes to zero.
Since the exact expressions are purely real, this serves as proof of the optimality of using the
arithmetic mean for the interface permittivity and the harmonic mean for the permeability.

Implementation of an AFP TFSF boundary for the TM' polarization also yields leaked fields
which are approximately 100 dB down from the peak field when the incoming field is very coarsely
discretized. Using a discretization which is typical of actual practice, the leaked field obtains a
maximum of approximately -180 dB relative to the peak of the incoming field.
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7 Lossy Materials

This section discusses the construction of a TFSF boundary which pertains to the case of a plane
wave (identified as the incoming wave) obliquely incident on a lossy halfspace. Although not
strictly required, the incoming wave is assumed to travel in a lossless medium. As before, the
boundary between the two media is assumed to be planar insofar as the calculation of the incident
field is concerned.

As has been discussed, the AFP TFSF boundary requires that one be able to calculate analyti-
cally the incident field at an arbitrary point. This necessitates calculation of the numeric wavenum-
bers as well as the numeric reflection and transmission coefficients. (Note that for any particular
simulation the interface between the media need not be planar and the contents of the TF region
are arbitrary. The assumption of homogeneous halfspaces and a planar interface are germane only
to the calculation of the incident field.) We start by describing the equations which govern FDTD
propagation in lossy medium.

Consider a harmonic field polarized in the z direction propagating in the xy plane of an FDTD
grid, i.e., TMZ polarization. The electric and magnetic fields can be written

az,, = atoe-j(kcm6+kjnb)ejwqAt

= az~ o ,(113)

ft = axfx + ayf-I = (ajHo. + aYft-y)e-jkrejwqAt,

=Ioe- e (114)

where 6 is the spatial step size (assumed uniform for the sake of notational simplicity), At is the
temporal step size, (m, n) are the spatial indices in the x and y directions, respectively, q is the
temporal index, w is the frequency, k = a.kx + ayky is the wave vector, r = axm6 + ayn6 is the
position vector, and t 0 is an arbitrary amplitude. A tilde is used to indicate a numeric quantity,
i.e., one whose value in the FDTD grid differs from that in the continuous world. The amplitudes
H-to0 and !o0 are dictated by the impedance of the grid.

Discretizing time, Ampere's law expanded about the time-step q + 1/2 is

v x Hq+1/ 2 = eEq+l - Eq Eq+I + Eq (115)
2At 2

where the superscript indicates the time step, a is the conductivity, c is the permittivity, and time-
averaging is used to obtain the conduction current at the necessary temporal location. For the given
harmonic fields, the temporal finite difference can be expressed as

. 2 (WAt k'\ 2=jkq12
A/-sin , (116)

whereas the time-average term can be written

COS tq+/ 2 = A- q+1/2. (117)
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The discretized form of the curl operation is unchanged from that presented in [5]. For a harmonic
field, the finite differences in the x and y directions, identified as O5, and 5y, respectively, can be'
represented by multiplicative operators, i.e.,

.2 6
c= -j-jK6 (118)

where ý E {x, y}. Thus Ampere's law can be written

-jKxHIoy + jKyf-o, = (jeQ + uA)Eo = jEQ I - - t. (119)

The phase term ejw(q+1/2)A, was common to all terms and hence dropped.
Defining K = axKx + ayKy, the discrete form of Faraday's law can be written

-jK x bq= -jpzf-q (120)

where p is the permeability (it is assumed the magnetic conductivity is zero although this is not
required). This yields two equations

!k!X0 = uEok, (121)

H!o = --K O0 . (122)

Using (121) and (122) in (119), one obtains the dispersion equation for lossy media

KX2 + KY2 = Q2tE 1[- j- (123)

This is the dispersion relationship for lossy material which was previously considered in [22] and
more recently studied in [23]. We define the complex permittivity to be

E = 1- ,j UA(124)

= 1 - jLcot 2-- , (125)

where the loss-factor L, is defined as aAt/(2E), the real quantity E is given by cEo, and 6o is the
permittivity of free space. Expressed in terms of the underlying functions the dispersion relation is

sin ('x) + sin 2 (ICy) = .- rsin 2 1  2--2) [1-jLacoty--J-2 (126)

where ,. is kC6/2 and 6 E {x, y}.
In the construction of the AFP TFSF boundary the frequency and the wave vector components

in the first medium can be easily calculated. Due to phase matching along the boundary, the
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tangential component of the wave number must be the same in both media, i.e., ky2 = ky, when the
interface corresponds to a constant x plane. We ignore superluminal wave numbers and hence kV2

is purely real. (Throughout the analysis we ignore superluminal propagation which is inherently
present but of little practical concern. See [9, 13] for further details.) Since the frequency is know,

Z

the only unknown in (126) is kz, the normal component of the wavenumber which is complex due

to the loss. We separate the real and imaginary parts of k, as kx = k[' + jik¢ or, correspondingly,

kx6/2 = k, = n' +j ,. Plugging this into (126), expanding terms, and separating real and
imaginary parts yields

cos(i')cosh(r,") = C', (127)

sin(i,)sinh(i,) = C", (128).

where

[= 1+ 2 sin 2( - frr sin2 (- (129)C' 1 2 in(tu) S'22

C" = - -4",•sin(wAt). (130)

Solving (127) and (128) for K' and n" (and using physical arguments to eliminate non-physical
solutions) yields

, 1 _UV

. -1 COS-1 , (131)2 -08-C
-2 eosh-1 I (132)

where

U =(M+Vx(M_2C')(M +2C')) 112'13

V = M- ,iiM- 2C')M +2C'), (134)

m = 1+ c/2 + ct2. (135)

The numeric reflection and transmission coefficients for TMI polarization were presented in
(111) and (112) for lossless isotropic media and in [4] for uniaxial media. We assume an inter-
face which is aligned with the E_, and H,, nodes as shown in Fig. 9. The FDTD reflection and
transmission coefficients which were derived already still pertain to the lossy case--the only dif-
ference is that the permittivity and wavenumber in the second medium become complex. When
the electric-field nodes on the interface use the arithmetic average of the values to either side for
the conductivity and the real part of the permittivity while the magnetic-field nodes on the inter-
face use the harmonic mean for the permeability (i.e., IL, = 2/iIA2/(Al + A2)), the reflection and
transmission coefficients are, respectively,

Z- A2 sin (2 n,,,) - I-t1 sin (2 k2 .,)
rt. 2 sin(2rj.) + tt sin(2k2,)' (16

Z 2/12 sin(2nl,)
Tt,, = p,1 sin(2n,.,) + A2 sin(2k2,,)" (137)
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Figure 9: Depiction of a TMZ grid with two dielectric halfspaces. The interface, corresponding
to x = 0, is aligned with E, and Hx nodes. The second medium is assumed lossy. Along the
interface the electric-field nodes use the arithmetic average of the permittivity and conductivity to
either side while the magnetic-field nodes use the harmonic mean of the permeabilities. The dashed
line represents the TFSF boundary. The nodes enclosed in rounded rectangles are tangential to the
TFSF boundary and hence must have their updates corrected using the incident field associated
with the other node in the box.
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These values reduce to the continuous-world values in the limit as the discretization goes to zero. If
one does not use the average material properties at the interface. This additional term can cause the
agreement between the FDTD and continuous-world values to be better than when using averaging.
However, this improvement only exists over a very narrow band of frequencies and the agreement
is worse at all other frequencies. Hence we continue to assume that the mean values are used for
the interface material parameters.

Although the dispersion relationship was derived in terms of TMZ polarization, the same results
pertain to TEz polarization, i.e., (131) and (132) still pertain. The reflection and transmission coef-
ficients derived previously are still pertinent provided one allows the permittivity and wavenumber
to be complex. The assumed TEZ grid is shown in Fig. 10. If the arithmetic mean is used for
the conductivity and permittivity on the boundary, the reflection and transmission coefficients are
essentially unchanged from before, i.e.,

- el sin(k,,2 ) COS(K.1) - 62 sin(n.,i) cos(k., 2)Pr -- 18
ri e = l sin(kX 2 ) Cos(Q l) + 2 sin( ) cos(k 2)'(138)

-Z 2V2 sin(iKx) cos(ni)
Tte= el sin(kx2) cos(xl) + e2 sin(ix 1) cos(k, 2)" (139)

Using the wavenumbers as well as the reflection and transmission coefficients described here, the
implementation of the AFP TFSF boundary then follows the implementation described previously.

8 Incidence beyond the Critical Angle

By allowing the normal component of the wave number in the second medium to be complex, the
capability is automatically present to model incoming fields which are incident beyond the critical
angle, i.e., the fields are evanescent in the second medium. As discussed in [13], the critical angle
in the FDTD world differs from that in the continuous world and is, in fact, a function of frequency.
Nevertheless, we will refer to the critical angle as if it were a constant. (When the second material
is lossy, the concept of a critical angle is nebulous since some energy is lost in the second medium.
The code developed here handles both lossless and lossy material but this section will be limited
to lossless material.)

When modeling incidence beyond the critical angle, one must keep in mind the somewhat un-
usual behavior of the incident field. The geometry assumed here is of an infinite, pulsed incoming
plane wave propagating obliquely toward an infinite planar interface separating two half spaces in
which the speed of propagation in the second medium is faster than in the first. Roughly speaking,
fields in the second medium can, and will, move tangentially along the boundary faster than they
can in the first medium. However, to satisfy the boundary conditions along the interface, these
faster moving fields will couple energy back into the first medium. These fields will be in advance
of the incoming wave. These "advanced fields," despite arriving at any given point before the
incoming wave, are causal. A good discussion of these fields can be found in [24,25].

In theory, the advanced fields are non-zero throughout space and this could be problematic
for implementation of a TFSF boundary which assumes the fields are initially zero throughout
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Figure 10: Depiction of a TE' grid with two dielectric halfspaces, the second of which is lossy.
The interface, corresponding to x = 0, is aligned with Ey nodes. For the interface nodes the
conductivity and permittivity use the arithmetic mean of the values to either side.
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the computational domain. However, in practice the advanced field are small and can be made
arbitrarily small by delaying the incoming wave. Additionally, if there is loss present in the second
medium, this serves to diminish the advanced fields.

Despite the existence of these advanced fields, the AFP TFSF implementation is oblivious
to them-the same code can be used for all incident angles. To illustrate the case of incidence
beyond the critical angle, Fig. 11 shows the magnitude of the H, field in a TEZ simulation where
Al = /12 -= A•0, er1 = 2, E,2 = 1, the incident angle is 60 degrees, and the Courant number
S, is 11/V2. The computational domain is 180 x 200 cells, the interface runs vertically through
the middle of the grid, and the TFSF boundary is offset 15 cells from the edge for the grid. The
incoming wave is a Ricker wavelet discretize such that there are 20 cells per wavelength (in the first
medium) at the frequency with the greatest spectral content. The Ricker wavelet is broad-banded
(see [5] for further details of this source function).

Figure 11 (a) shows the field at time-step 180, shortly after the field has become clearly visible
in the TF region. The incoming wave has unit peak amplitude and the images use logarithmic
scaling so that fields are essentially visible over three decades (i.e., fields greater than 10-3 are
visible). In Fig. 1 l(a) one can see the distinct incoming field as well as the "haze" associated with
the field which arrives in advance of the incoming wave. This leading field exists throughout the
computational domain but falls off as one moves away from the incoming wave.

Figures 11 (b) and (c) show the field at time-steps 330 and 460, respectively. Note that the
incident field is not visible in the SF region. For this particular simulation the peak leaked field
is less than 6 x 10- 5 . This is much greater than the leaked field found in the typical beneath-
critical-angle case where the leaked field is on the order of 10' for reasonable discretizations.
The amount of leaked field can be reduced further by delaying the incoming wave or by changing
the source function so that it is has less low-frequency content. (Low-frequency energy, with its
long wavelengths, falls off very slowly.) If loss can be added to the second medium, this can also
significantly reduce the leaked field.

To verify that the observed leaked fields were a consequence of the inherent nature of the
incident field and not the result of a coding error, a simulation was performed in which the AFP
technique was used to calculate the initial field at every point within the TF region. In this case the
leaked field dropped to approximately 10-15. Thus the implementation was correct and the leaked
fields are a consequence of the AFP calculation yielding a particular non-zero value over the entire
TFSF boundary but the TF region is initially zero. Unfortunately this type of initialization is not
a practical way to lower the leaked field for two reasons. First, it is computationally cumbersome
and, second, it presupposes no scatterers are present in the TF region. (Simulations which lack a
scatterer are of no practical interest.)

Figure 11 (d) is also a snapshot at time-step 460. However, to illustrate that the contents of
the TF region can be arbitrary, a notch has been placed in the interface. The notch is 20 x 20
cells where the second medium now protrudes into the first. Because of this notch the fields in the
second medium are no longer purely evanescent. One can see the field scattered by the notch and
how it has passed into the SF region at this particular time step.
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Figure 11: Snapshots of the magnetic field at time-steps (a) 180, (b) 330 and (c) 460. (d) Magnetic
field at time-step 460 showing the field scattered from a notch in the surface. The incident angle is
60 degrees with respect to horizontal.

37



x
- 4-sided TFSF

srmuat boundaries

Figure 12: Depiction of 3D computational domain with associated 2D auxiliary simulations.

9 Three-Dimensional Simulations

At present the AFP TFSF method cannot be applied to three-dimensional (3D) halfspace problems
with arbitrary incidence because the numeric reflection and transmission coefficients have not been
obtained for the general 3D case. Were these available, the 3D formulation of the AFP TFSF
technique would be a trivial extension to the two-dimensional (2D) case. One would merely have
three components to the wave vector instead of two and evaluation points would have three indices
instead of two. However, precomputing the incident field over the TFSF boundary in 3D simulation
would potentially be costly. In 3D the TFSF boundary is six-sided (as depicted in Fig. 12). There
are four field components per face. If the incident field is non-zero over a large number of time
steps, the memory required to store the incident field could easily exceed the memory required tostore the fields within the grid itself. Therefore it is envisioned that a general 3D implementation
using the AFP technique would store the precomputed field to disk (possibly stored in six separate
files representing the six faces). In this case, in order to make the necessary corrections to the fieldtangential to the TFSF boundary, a 3D FDTD simulation would merely read the stored incidentfield from disk. This shifts the calculation burden toa a priori step and the memory burden to
disk. (Versions of the authors' 2D programs allow the incident field to be precomputed, stored todisk, and then read concurrently with the FDTD simulation.)

The implementation of the general 3D problem is the subject of on-going research. However,for 3D problems in which the incident field propagates orthogonal to one of the grid axes, thereis a relatively simple way to implement the AFP TFSF technique efficiently. The approach isillustrated in Fig. 12. Here it is assumed that the incident field is propagating obliquely to the x andy directions, but orthogonal to the z direction (one can easily permute the indices for propagationin other direction). The polarization of the incident field is arbitrary, i.e., all six field componentsare allowed to be nonzero. Two 2D auxiliary simulations are performed to calculate the incidentfield, one for the TEZ components of the incident field and one for the TMl components. These
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simulations require that the incident field be specified over eight one-dimensional boundaries (four
for each of the 2D simulations).

It is required that the TF regions of the 2D simulations be at least as big as the cross-sectional
area of the TF region in the 3D grid (with the geometry shown here, this would correspond to the
area of the TF region seen along a constant z plane). The auxiliary simulations do not include any
scatterers. Since the fields leaked into the SF region by the AFP technique are typically so small,
one need not pay much attention to termination of these auxiliary grids (i.e., since the leaked fields
are often on the order of 10-9 one does not have to worry about using ABC's to terminate the
grids). Note that the assumed locations of the interfaces shown in Fig. 9 and 10 are consistent with
slices through a 3D grid.

Referring to the geometry shown in Fig. 12, the interior of the TF regions of the auxiliary grids
would provide the x and y components of the fields needed at the "top" and "bottom" of the TFSF
boundary in the 3D grid (i.e., at the two constant z planes). The fields on the constant x and y
planes are also taken from the auxiliary simulations, but in this case, since there is no variation in
the z direction, the value is only a function of x or y (the same value pertains to the entire vertical
extent of the face of the boundary).

In the FDTD grid the decomposition of the incident field into TE and TM components is not
trivial since, in general, the electric field, magnetic field, and direction of propagation do not
form an orthogonal set. One can specify the direction of travel and the orientation of the electric
field, but then one cannot use a simple vector projection of the field components and characteristic
impedance of the continuous-world medium to find the relative amplitudes of the TE and TM fields.
Instead, one must use the FDTD impedance relationship to determine the amplitudes. Details
concerning polarization can be found in [5].

10 Conclusion

The AFP TFSF method can be readily applied to problems involving planar interfaces, whether
dielectric or PEC. The method is ideally suited to oblique incidence and does not suffer the in-
herent approximations associated with using an auxiliary grid. If no wavenumber components are
discarded from the transforms, the only errors associated with the technique would be those associ-
ated with implementation of the discrete-time Fourier transform. In practice, even when discarding
superluminal wavenumber components and using a coarsely discretize incoming field, the leaked
fields are approximately 100 dB down from the peak excitation. Using a discretization which is
more typical of actual practice, the leaked fields are approximately 180 dB down. Modularized
programs, written in C, which implement the AFP TFSF method for all the cases considered here
are available from the PI.

The approach used here is not restricted to the second-order Yee FDTD algorithm. The same
steps could be followed to derive an AFP TFSF technique for any FDTD method which has a rig-
orous dispersion relation. Additionally, the method could be applied to multiple layers where one
would have to solve for the fields in the multi-layer system as is done in the continuous world. As
will be discussed in a companion paper, the method can be used with lossy media, can model inci-
dent angles beyond the critical angle (i.e., where the fields in the second medium are evanescent),
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and can be implemented efficiently in three dimensions.
For problems which can be solved both by the AFP technique and the traditional one-dimensional

auxiliary-grid approach, the AFP technique yields far greater accuracy (except in the case of grid-
aligned propagation). Furthermore, the AFP TFSF technique provides the ability to study many
problems which cannot be solved using the traditional one-dimensional auxiliary-grid approach.
For incident angles beyond the critical angle, the solution obtained from the AFP technique is
compromised somewhat by the inherent nature of the field which arrives in advance of the in-
coming wave. This degradation is unavoidable given the seemingly acausal incident field and it
is believed that no other TFSF method could provide better fidelity. The AFP technique can be
applied efficiently to 3D problems in which propagation is orthogonal to one of the axes. For elec-
tromagnetics, this requires that two auxiliary 2D simulations be performed--only one would be
required in an acoustic simulation. A general 3D implementation appears possible but this awaits
the derivation of the FDTD reflection and transmission coefficients in 3D.
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